66. Stereoselectivity of Dienamine [4 + 2] Cycloadditions

Synthesis of Functionalised Decalins and Drimanes

by Roger L. Snowden*, Robert Brauchli, and Manfred Wüst

Firmenich SA, Laboratoires de Recherche, CH-1211 Genève 8

(21.II.90)

The [4 + 2] cycloaddition stereoselectivity of dienamines 1–4 with dimethyl fumarate and fumaronitrile has been investigated, and functionalised decalins 21–40 have been prepared by elimination of Me₂NH from cycloadducts 7–11 and 15–20; in the context of the synthesis of drimane sesquiterpenes, the reduction of dienediesters 29 and 30 is also described.

Introduction. – During the past few years, we have investigated synthetic applications related to the use of conjugated dienamines in [4 + 2] cycloaddition reactions. Examples include methodology such as cyclohexannulation [1a] or benzannulation [1b] and syntheses of γ -damascone [2] and specifically substituted decalins [3]. We now report on the cycloaddition stereoselectivity of dienamines 1–4 with dimethyl fumarate and fumaronitrile. In addition, we briefly discuss the synthetic utility of the resulting cycloadducts for the preparation of functionalised decalins¹) and for the construction of the drimane skeleton I^2).

Results and Discussion. – [4 + 2] Cycloadditions of Dienamines 1–4 with Dimethyl Fumarate and Fumaronitrile. The cycloaddition reactions of dienamines 1–4 with dimethyl fumarate and fumaronitrile are summarised in Table 1. In each experiment, the reaction was monitored by GLC³), and the resulting product mixture (yield: 82–91%) was analysed by ¹H-NMR spectroscopy; the cycloadducts 5–11 and 13–19 were purified by chromatography, characterised, and structural assignments were established by inspection of their ¹H- and ¹³C-NMR data (cf. Table 2 and the Fig.). The reactivity order of 1–4 with both dienophiles is consistent with the relative steric encumbrance of the dienamines (*i.e.* 2 > 3 > 1 > 4). The situation, however, is more complex with regard to

¹) For an analogous synthesis of decalins using methyl acrylate as dienophile, see [3b].

²⁾ X and Y represent unspecified functionalities; for a recent review of synthetic work concerning drimane-related sesquiterpenes, see [4].

³) These *Diels-Alder* reactions are kinetically controlled, the ratio of cycloadducts remaining unchanged throughout the course of the reactions.

Entry	Diene	Reaction conditions ^a)	Cycloadducts	Yield [%] ^b)
1	1	<i>A</i> , 150°/24 h	$\begin{array}{c} \begin{array}{c} CO_2Me \\ \hline \\ CO_2Me \\ \hline \\ NMe_2 \\ 5 \end{array} \begin{array}{c} CO_2Me \\ \hline \\ NMe_2 \\ 6 \end{array}$	86
2	2	<i>A</i> , 25°/17 h	$\begin{array}{c} \begin{array}{c} & & \\ $	88
3	3	<i>A</i> , 110°/3 h	$\begin{array}{c} H \\ \downarrow \\ \downarrow \\ \downarrow \\ \downarrow \\ 9 \end{array} \begin{array}{c} CO_2 Me \\ H \\ \downarrow \\ \downarrow$	91
4	4	<i>A</i> , 150°/48 h	$\begin{array}{c} CO_2 Me \\ \hline CO_2 Me \\ \hline NMe_2 \\ 11 \\ (\ge 20:1) \\ 12^{\circ} \end{array}$	88
5	1	<i>B</i> , 110°/3 h	$\begin{array}{c} CN \\ \hline \\ NMe_2 \\ 13 \end{array} \begin{array}{c} CN \\ \hline \\ NMe_2 \\ 14 \end{array}$	82
6	2	<i>B</i> , 25°/1 h	$H \stackrel{CN}{\longrightarrow} CN + H \stackrel{CN}{\longrightarrow} CN + I6$	89
7	3	<i>B</i> , 25°/1 h	$H = \frac{CN}{NMe_2} + H = \frac{H}{NMe_2} + \frac{H}{NMe_2} + \frac{H}{18} + \frac{CN}{NMe_2} + \frac{H}{18} + \frac{H}{NMe_2} + \frac{H}{18} + \frac{H}{NMe_2} + \frac{H}{18} + H$	90
8	4	<i>B</i> , 110°/17 h	$19 (\geq 20:1) 20^{d}$	85

Table 1. [4 + 2] Cylcoadditions of Dienamines 1-4 with Dimethyl Fumarate and Fumaronitrile

a) A: Dimethyl fumarate (1.5 mol-equiv.), toluene; B: fumaronitrile (1.5 mol-equiv.), toluene.

 b) A balactive ratio (i.e. and i.e. a provide the product of the product of the product of the product mixture.
 c) Cycloadduct 12 was not detected by ¹H-NMR of the crude product mixture.
 d) Cycloadduct 20 was detected by ¹H-NMR of the crude product mixture. Yields refer to the sum of isolated cycloadducts after chromatography purification.

Table 2 7–11, 1	2. ¹³ C-1 1 5–19 . 2	V <i>MR</i> (21–23,	Chemic 25–27	cal Sh	<i>ifts</i> [ppn 33, and 3	1] <i>and A</i> 36–49	ssignme	nts for C	Compou	nds	3 2 8 ²	$ \begin{array}{c} \mathbf{R}^{1} \\ 4a \\ 8a \\ 8a \\ 7 \\ \mathbf{R}^{3} \end{array} $	Y
Com- pound	C(1)	C(2)	C(3)	C(4)	C(4a)	C(5)	C(6)	C(7)	C(8)	C(8a)	$CH_3(R^1)$	CH ₃ (R ²)	CH ₃ (R ³)
7 ^a)	35.4	27.4	25.8	33.3	40.6	45.2	48.0	58.9	116.1	142.7			
8 ^a)	36.1	29.3	26.5	30.6	40.2	47.0	41.0	64.2	117.2	143.6			
9 ^a)	36.5	40.9	21.4	33.6	37.6	45.5	47.9	59.2	114.0	149.4		27.6	29.7
10 ^a)	37.4	42.6	22.4	31.0	36.0	47.3	40.4	64.5	115.9	149.5		25.4	29.3
11 ^a)	36.4	40.8	18.2	39.3	37.8	52.0	45.5	58.2	115.3	153.6	22.1	30.8	33.0
15 ^a)	34.8	26.9	25.4	33.3	40.9	32.9	35.3	58.2	117.2	141.2			
16 ^a)	35.9	28.8	26.0	31.0	38.3	33.8	28.9	62.4	116.4	143.0			
17 ^a)	36.5	40.5	21.1	33.8	37.8	33.2	35.0	58.3	115.0	148.0		26.8	29.2
18 ^a)	37.7	42.3	21.9	31.4	34.6	34.3	28.3	62.9	115.0	149.3		25.1	28.9
19 ^a)	36.4	40.6	17.8	39.0	37.3	42.5	33.2	57.1	116.0	152.0	22.1	29.7	32.1
21 ^a)	35.8	30.2	26.6	36.4	42.7	45.5	121.0	134.2	114.8	151.9			
22	29.8	23.0	22.6	28.3	127.4 ^c)	47.8	124.1°)	139.0	32.9	127.7°)		
23 ^a)	34.2	26.1	25.8	30.1	39.1	44.0	122.5	135.3	117.0	148.9			
25 ^a)	37.8	43.4	22.4	36.0	38.6	45.3	120.6	134.3	112.6	158.4		25.9	28.4
26	36.8	40.3	21.4	30.5	36.6	44.3	122.2	135.7	114.9	156.5		28.9	28.9
27	33.8	39.2	19.1	27.1	127.2	48.4	124.0	139.9	29.7	134.3		27.2	28.3
29 ^a) ^b)	35.7	39.3	18.0	39.1	38.5	55.5	124.9	133.9	117.0	161.5	18.8	32.1	31.7
30 ^a)	35.7	38.8	17.9	35.6	38.5	52.5	122.0	135.8	116.7	160.9	26.3	31.1	32.2
31	34.3	27.0	25.3	34.6	40.6	34.0	99.6	140.4	116.5	150.5			
32	33.9	25.4	24.8	29.8	37.8	32.8	99.6	141.5	117.8	150.3			
33 ^a)	37.3	40.8	20.9	34.5	37.8	34.2	99.3	140.8	114.1	157.7		27.4	28.3
36 ^a)	136.4	40.9	21.9	34.3	36.6	128.4	123.0	29.6	110.0	142.8		25.0	28.7
37	37.0	39.7	20.5	30.1	35.7	33.2	99.7	141.7	115.6	158.3		28.3	29.1
38 ^a)	36.4	39.3	17.8	39.1	37.8	43.4	101.4	140.2	117.0	162.8	18.7	31.0	31.4
39 ^a)	36.2	38.6	17.7	36.3	38.3	41.5	100.2	141.4	117.1	162.2	23.3	31.5	30.6
40 ^a)	136.4	40.2	18.1	37.8	38.6	136.1	122.8	29.5	114.0	146.9	26.8	30.1	32.2
41 ^a)	33.0	42.0	18.6	40.3	36.0	57.7	128.7	140.3	24.0	48.9	15.3	22.0	33.3
42 ^a)	33.2	42.1	18.4	38.6	37.5	56.9	41.3	27.9	18.7	55.5	13.7	21.7	33.6
43 ^a)	33.0	42.1	18.8	39.4	35.6	54.5	137.1	127.0	23.6	49.5	14.5	21.9	33.2
44	33.0	42.2	18.3	41.3	35.1	52.4	45.4	23.7	18.5	53.9	15.6	21.9	33.4
45 ^a) ^b)	35.5	39.9	18.6	40.0	37.6	52.5	136.0	125.1	117.3	154.9	17.7	31.9	31.8
46 ^a)	35.9	40.7	18.4	40.3	35.7	51.2	43.7	24.1	118.1	151.5	21.9	31.2	32.3
47 ^d)	35.1	39.7	18.2	34.1	37.8	49.8	136.9	121.7	116.8	152.6	25.0	31.4	32.4
48 ^a)	") 4	42.5	19.3	34.2	37.5	50.8	41.2	25.9	119.7	151.0	29.4	27.9	33.7
49ª)	<u> </u>	42.5	19.2	34.4	38.4	54.6	44.2	28.6	119.2	151.6	28.4	27.9	53.7
^a) C,H	-Correl	lation.	^b) 2E)-Inac	lequate.	^c) Inte	rchange	able. d) Unobs	served.			

Figure. ¹³C-NMR Chemical shifts [ppm] and assignments (C,H correlation) for compounds 5, 6, 13, and 14

the stereoselectivities of these cycloadditions. Thus, whereas the reaction between 1 and dimethyl fumarate is non-stereoselective, affording a 1:1 mixture 5/6 (86%) (cf. Entry 1), for 2, 3, and 4 there is a progressive increase in stereoselectivity with the formation of a 4:1 mixture 7/8 (88%), a 15:1 mixture 9/10 (91%), and a $\ge 20:1$ mixture 11/12 (88%), respectively (cf. Entries 2-4). With fumaronitrile as dienophile, a different stereochemical behaviour is observed. Similar stereoselectivity to that found for dimethyl fumarate (vide supra) is exhibited for 3 and 4, furnishing a 5:1 mixture 17/18 (90%) and a ≥ 20 :1 mixture 19/20 (85%), respectively (cf. Entries 7 and 8); in contrast, 1 and 2 show reversed stereoselectivity, affording a 1:7 mixture 13/14 (82%) and a 1:5 mixture 15/16 (89%), respectively (cf. Entries 5 and 6). These results can be rationalised by consideration of the two possible cycloaddition transition states (cf. Scheme 1). For dimethyl fumarate (Z = COOMe), the preference for the formation of cycloadduct II via an endo-transition state⁴) is positively influenced by the increase in steric bulk of R^3 which causes an unfavourable nonbonding interaction with the COOMe group at C(5) in the *exo*-transition state. In contrast, when fumaronitrile is the dienophile, this influence, although dominant for 3 and 4, is overridden by a preference for cycloadduct III via an exo-transition state in which both COOMe groups and the Me₂N group occupy pseudoequatorial positions in the newly forming cyclohexene ring.

Synthesis of Decalins 21–40 (cf. Table 3). As part of an ongoing program concerning the synthesis of functionalised decalins [3b], we now investigated the elimination of Me₂NH from 7–11 and 15–19 by treatment with silica gel in refluxing cyclohexane. The reactions were followed by GLC analysis and the products isolated by chromatography. Cycloadducts 7, 9, and 11 readily underwent elimination to afford a 1.5:1 mixture 21/22 (85%), 25 (84%), and a 20:1 mixture 29/30 (86%)⁵), respectively (cf. Entries 1, 3, and 5).

⁴) endo and exo refer to the orientation of the COOMe group which is adjacent to the Me_2N group.

⁵) The presence of **30** (5%) is explained by partial epimerisation at C(1) under the basic reaction conditions; indeed, treatment of **29/30** (20:1) with MeONa/MeOH at r.t. afforded a 1:5.4 equilibrium mixture **29/30** (cf. *Exper. Part* and [5]).

Entry	Substrate ^a)	Reaction time	Products (yield)
1	7	6 h	$\begin{array}{c} \begin{array}{c} & & & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & $
2	8	24 h	$\begin{array}{c} & & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & &$
3	9	6 h	H CO ₂ Me CO ₂ Me 25 (84%)
4	10	24 h ^b)	$\begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $
5	11	6 h	$\begin{array}{c} CO_2 Me \\ CO_2 Me \\ CO_2 Me \\ + \\ 29 (82\%) \end{array} + \\ 30 (4\%) \end{array}$
6	15/16 (1:5)	20 h	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array}\\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} $ \left \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \left \begin{array}{c} \end{array} \\ \end{array} \left \begin{array}{c} \end{array} \\ \end{array} \left \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \left \begin{array}{c} \end{array} \\ \end{array} \left \begin{array}{c} \end{array} \\ \end{array} } \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} } \\ \end{array} \\ \end{array} } \\ \end{array} } \\ \end{array} \\ \end{array} \\ \end{array} } \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} } \\ \end{array} \\ \end{array} \\ \end{array} } \\ \end{array} \\ \end{array} \\ \end{array} } \\ \end{array} \\ \end{array} } \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} } \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} } \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} } \\ \end{array} } \\ \end{array} \\ \end{array} \\ \end{array} } \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} } \\ \end{array} \\ \end{array} \\ \end{array} } \\ \end{array} \\ \end{array} } \\ \end{array} \\ \end{array} \\ \end{array} } \\ \end{array} \\ \end{array} \\ \end{array} } \\ \end{array} } \\ \end{array} \\ \end{array} } \\ \end{array} \\ \end{array} } } \\ \end{array} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \\ T } \\ T } \\ T \\ T } } \\ T } } \\ T } } \\ T } \\ T } \\ T } \\ T } } \\ T } \\ T } \\ T } \\ T T } \\ T } \\ T } } T } \\ T T T \\ T T \\ T T \\ T T T T T \\
7	17	2 h	H CN 33 (85%) CN
8	18	20 h	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ 34 (65^{n} a) \\ \end{array} \\ \end{array} + \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ 35 (11\%) \\ \end{array} $
9	18	40 h°)	$\begin{array}{c} + & + & + & + \\ & + & + & + & + \\ & 36 (54^{\circ}_{(6)}) & & 37 (7^{\circ}_{(6)}) & & (6:1) \end{array}$
10	19	2 h	$\begin{array}{c} CN \\ CN $

Comparison of substrates 7 and 9 is instructive. Whereas 7 affords 21 via 1,2-elimination of Me₂NH and 22, presumably via 1,4-elimination of Me₂NH followed by C=C bond isomerisation⁶), 9 gives exclusively 25 by the former pathway. This difference in behaviour is probably due to the axial Me-C(1) group in 9 which sterically disfavours abstraction of H-C(4a). In contrast, cycloadducts 8 and 10 underwent sluggish elimination of Me₂NH, affording complex product mixtures of limited preparative interest (cf. Entries 2 and 4). The higher activation energy for cis-1,2-elimination accounts for the low yields of 23 and 26 (19 and 26%, respectively) and explains the relatively important amounts of 22 (26%) and 27 (15%), products resulting from 1,4-elimination of Me₂NH⁶). Also formed were the aromatic diesters 24 (14%) and 28 (12%), oxidation products from 22 or 23 and 26 or 27, respectively.

The cycloadducts 15–19 exhibit varying behaviour with respect to the elimination of Me_2NH . For example, 17 and 19 both readily underwent 1,2-elimination, in the former case cleanly affording 33 (85%), but in the latter case giving a 4:4:1 mixture 38/39/40 (89%), a result which reflects the ready isomerisation of 38 under the reaction conditions⁷) (cf. Entries 7 and 10). Slower elimination reactions were observed with 15/16 (1:5), which afforded a 1.5:1 mixture 31/32 (40%, cf. Entry 6), and 18 which, under the same conditions, unexpectedly furnished a 6:1 mixture of the aromatic nitriles 34/35 (78%, cf. Entry 8), formed by elimination of HCN from the putative intermediate 37. A second experiment performed at 50° (cf. Entry 9) resulted in the isolation of 36 (54%), 33/37 (1.6:1, 18%), and 34/35 (6:1, 7%), indicating that 1,2-elimination to 37 is followed by isomerisation to 36 and 33. It is interesting to note that, in contrast to 7–11, 1,4-elimination of Me₂NH is not observed for cycloadducts 15–19. An explanation for this difference may be the relatively higher acidity of H–C(6) in the latter substrates which thus strongly favour the 1,2-elimination.

Synthesis of 41-49 (cf. Scheme 2). A direct application in the field of natural-product synthesis is the ready access to 29 (vide supra)⁸), a known intermediate for the preparation of biologically active drimane sesquiterpenes [5] [8]; in this context, we briefly report on several transformations of 29°) and 30. Accordingly, chemoselective catalytic hydrogenation of 29 stereoselectively afforded ene-diester 41 (82%) together with diester 42 (3%); subsequent reduction of 41 with LiAlH₄ at -30° gave ene-diol 43 (66%) and lactol

⁶) The putative diene-diester intermediates, i and ii were not detected in the product mixture.

⁷) Prolonged reaction times do not alter the composition of 38/39/49, assumed thus to be already at thermodynamic equilibrium.

⁸) For a preliminary communication concerning the preparation of **29** from (*E*)-4-methyl-1-pyrrolidinopenta-1,3-diene and prior *Diels-Alder* approaches for the construction of analogous systems, see [3a] and ref. cit. therein; for more recent examples, see [6]; for related intramolecular *Diels-Alder* cycloadditions directed towards the synthesis of forskolin, see [7].

⁹⁾ These reactions, with slightly different results, have been reported by Lallemand and coworkers [5].

44¹⁰) (12%). Similar reduction of 29 and 30 with LiAlH₄ afforded 45 (62%) and 47 (69%), accompanied with minor amounts of the corresponding lactols 46¹⁰) (10%) and 48/49¹⁰) (1.3:1, 9%), respectively.

Experimental Part

General. See [9].

General Procedure for the Preparation of Cycloadducts 5–11 and 13–19. Dieneamines $1-4^{11}$ (0.01 mol) were treated with dimethyl fumarate or fumaronitrile (0.015 mol) in either toluene or xylene (50 ml) under the reaction conditions described in *Table 1*. The mixture was then concentrated *i.v.*, and the residue was analysed by ¹H-NMR and purified by CC (silica gel, cyclohexane/AcOEt 4:1) to afford 5–11 and 13–19.

Dimethyl (1RS,2SR,3RS)- and (1RS,2SR,3SR)-3-(Dimethylamino)-6,6-dimethylcyclohex-4-ene-1,2-dicarboxylate (5 and 6, resp.; 1:1 diastereoisomeric mixture). Yield from 1, 86%.

Data of **5**. White crystals. M.p. 78–79°. *R*_f (cyclohexane/AcOEt 7:3) 0.42. IR (CHCl₃): 2950, 1720, 1432, 1320, 1260, 1190, 1160, 1018, 822, 784. ¹H-NMR: 0.85 (*s*, 3 H); 1.22 (*s*, 3 H); 2.28 (*s*, 6 H); 2.96 (*d*, *J* = 12.5, H–C(1));

¹⁰) The configurations of the hitherto unreported lactols **44**, **46**, and **48/49** (1.3:1), products of 1,4-hydride reduction, were tentatively assigned by inspection of their ¹H- and ¹³C-NMR spectra.

¹¹ Dieneamine 1 was prepared by treating (*E*)-4-methylpent-2-enal with 40% Me₂NH soln. (*Fluka*) [3b]; for 2-4, see [3b]. *Data of* 1. B.p. 25–28°/0.05 Torr. IR: 1650, 1618, 1432, 1350, 1140, 1082, 1040, 930. ¹H-NMR: 1.69 (*s*, 3 H); 1.73 (*s*, 3 H); 2.67 (*s*, 6 H); 5.03 (*dd*, *J* = 13.5, 11, 1 H); 5.72 (br. *d*, *J* = 11, 1 H); 6.13 (*d*, *J* = 13.5, 1 H). MS: 125 (100, *M*⁺⁺), 110 (50), 94 (21), 82 (70), 67 (20).

3.15 (*dd*, J = 12.5, 7, H-C(2)); 3.52 (br. *dd*, J = 7, 4.5, H-C(3)); 3.70 (*s*, 6 H); 5.61 (*dd*, J = 11, 4.5, H-C(4)); 5.67 (*d*, J = 11, H-C(5)). ¹³C-NMR: 174.0 (*s*); 173.8 (*s*); 51.4 (*q*); 51.3 (*q*); 43.2 (2*q*) (for rest of data, *cf*. the *Fig.*). MS: 269 (3, M^{++}), 155 (29), 125 (100), 110 (39), 91 (18), 82 (64), 72 (21).

Data of **6**. White crystals. M.p. 59–61°. R_f (cyclohexane/AcOEt 7:3) 0.25. IR (CHCl₃): 2950, 1720, 1430, 1258, 1198, 1014, 982. ¹H-NMR: 0.95 (*s*, 3 H); 1.18 (*s*, 3 H); 2.29 (*s*, 6 H); 2.82 (*d*, J = 11.5, H–C(1)); 2.97 (*dd*, J = 11.5, 11, H–C(2)); 3.47 (br. *d*, J = 11, H–C(3)); 3.68 (*s*, 3 H); 3.70 (*s*, 3 H); 5.51 (*dd*, J = 11, 2, H–C(4)); 5.56 (*d*, J = 11, H–C(5)). ¹³C-NMR: 175.6 (*s*); 172.8 (*s*); 51.8 (*q*); 51.4 (*q*); 40.2 (2*q*) (for rest of data, *cf*. the *Fig.*). MS: 269 (1, M^+), 155 (28), 125 (100), 110 (29), 91 (11), 82 (54), 72 (13).

Dimethyl (4aRS,5RS,6SR,7RS)- and (4aRS,5SR,6RS,7RS)-7-(Dimethylamino)-1,2,3,4,4a,5,6,7-octahydronaphthalene-5,6-dicarboxylate (7 and 8, resp.; 4:1 diastereoisometric mixture). Yield from 2, 88%.

Data of 7. White crystals. M.p. 81–83°. $R_{\rm f}$ (AcOEt) 0.36. IR (CHCl₃): 2910, 2850, 1720, 1430, 1260, 1160, 1020, 980, 850. ¹H-NMR: 1.10 (*m*, 1 H); 1.30 (*m*, 2 H); 1.79 (br. *d*, *J* = 11, 2 H); 1.92–2.12 (3 H); 2.28 (*s*, 6 H); 2.34 (br. *d*, *J* = 13, 1 H); 2.81 (*dd*, *J* = 12.5, 9.5, H–C(5)); 2.99 (*dd*, *J* = 12.5, 6, H–C(6)); 3.52 (*m*, H–C(7)); 3.68 (*s*, 3 H); 3.71 (*s*, 3 H); 5.48 (br. *d*, *J* = 6, H–C(8)). ¹³C-NMR: 176.6 (*s*); 173.7 (*s*); 51.8 (*q*); 51.5 (*q*); 43.9 (2*q*) (for rest of data, *cf*. *Table 2*). MS: 295 (5, *M*⁺⁻), 151 (100), 136 (19), 123 (19), 108 (20), 105 (21), 91 (24).

Data of **8**. White crystals. M.p. 94–95°. R_f (AcOEt) 0.22. IR (CHCl₃): 2820, 1720, 1430, 1260, 1180, 990. ¹H-NMR: 1.23 (*m*, 2 H); 1.42 (*m*, 2 H); 1.83 (*m*, 2 H); 1.98 (*m*, 1 H); 2.26 (*m*, 1 H); 2.29 (*s*, 6 H); 2.42 (*m*, 1 H); 2.81 (*dd*, J = 11.5, 11, H-C(6)); 3.15 (*dd*, J = 11.5, 6, H-C(5)); 3.44 (br. *d*, J = 11, H-C(7)); 3.67 (*s*, 3 H); 3.71 (*s*, 3 H); 5.36 (br. *s*, H-C(8)). ¹³C-NMR: 176.2 (*s*); 173.4 (*s*); 51.9 (*q*); 51.7 (*q*); 40.2 (2*q*) (for rest of data, *cf. Table 2*). MS: 295 (2, M^{+}), 151 (100), 136 (16), 123 (18), 108 (17), 105 (11), 91 (19).

Dimethyl (4aRS,5RS,6SR,7RS)- and (4aRS,5SR,6RS,7RS)-7-(Dimethylamino)-1,2,3,4,4a,5,6,7-octahydro-1,1-dimethylnaphthalene-5,6-dicarboxylate (9 and 10, resp.; 15:1 diastereoisomeric mixture). Yield from 3, 91%.

Data of **9**. White crystals. M.p. 110–111°. R_f (cyclohexane/AcOEt 7:3) 0.19. IR (CHCl₃): 2900, 1720, 1432, 1260, 1160, 980, 958, 900, 860. ¹H-NMR: 1.01 (*s*, 3 H); 1.07 (*m*, 1 H); 1.13 (*s*, 3 H); 1.31 (*m*, 1 H); 1.49 (br. *d*, J = 14, 1 H); 1.55–1.63 (2 H); 2.04 (*m*, 1 H); 2.24 (*m*, 1 H); 2.29 (*s*, 6 H); 2.76 (*dd*, J = 12.5, 9.5, H–C(5)); 2.92 (*dd*, J = 12.5, 5.5, H–C(6)); 3.53 (br. *dd*, J = 5.5, 5.5, H–C(7)); 3.68 (*s*, 3 H); 3.72 (*s*, 3 H); 5.60 (br. *d*, J = 5.5, H–C(8)). ¹³C-NMR: 177.0 (*s*); 173.8 (*s*); 51.8 (*q*); 51.5 (*q*); 44.0 (2*q*) (for rest of data, *cf. Table 2*). MS: 323 (5, M^{++}), 308 (1), 179 (100), 164 (58), 123 (21), 108 (21), 105 (25), 95 (28), 91 (38).

Data of **10**. White crystals. M.p. 91–92°. R_f (cyclohexane/AcOEt 7:3) 0.08. IR (CHCl₃): 2900, 2850, 1720, 1430, 1260, 1162, 984. ¹H-NMR: 1.09 (2s, 6 H); 1.18 (m, 2 H); 1.40 (m, 1 H); 1.51 (br. d, J = 13.5, 1 H); 1.58–1.70 (2 H); 2.30 (s, 6 H); 2.70 (m, 1 H); 2.80 (dd, J = 12, 11, H-C(6)); 3.07 (dd, J = 12, 6, H-C(5)); 3.44 (br. d, J = 11, H-C(7)); 3.69 (s, 3 H); 3.71 (s, 3 H); 5.37 (br. s, H–C(8)). ¹³C-NMR: 176.4 (s); 173.6 (s); 51.9 (q); 51.8 (q); 40.2 (2q) (for rest of data, cf. Table 2). MS: 323 (3, M^{+}), 308 (1), 179 (100), 164 (50), 123 (28), 108 (25), 105 (24), 91 (45).

 $\begin{array}{ll} Dimethyl & (4a\,\mathrm{RS},5\,\mathrm{RS},6\,\mathrm{SR},7\,\mathrm{RS}\,)^{-7-}(Dimethylamino\,)^{-1},2,3,4,4a,5,6,7-octahydro^{-1},1,4a-trimethylnaphthalene-5,6-dicarboxylate (11). Yield from 4, 88 %. Colourless oil. <math>R_{\mathrm{f}}$ (cyclohexane/AcOEt 4:1) 0.19. IR: 1720, 1430, 1160, 1018, 982, 780, 662. ¹H-NMR: 1.10 (s, 3 H); 1.15 (s, 3 H); 1.16 (s, 3 H); 1.10-1.85 (6 H); 2.28 (s, 6 H); 2.81 (d, J = 13, H-C(5)); 3.33 (dd, J = 13, 8, H-C(6)); 3.50 (dd, J = 8, 3.5, H-C(7)); 3.67 (s, 3 H); 3.68 (s, 3 H); 5.61 (d, J = 3.5, H-C(8)). ^{13}C-NMR: 174.3 (s); 174.0 (s); 51.4 (2q); 43.1 (2q) (for rest of data, cf. Table 2). MS: 337 (5, M^{++}), 322 (10), 193 (100), 178 (36), 122 (17), 105 (17), 91 (16). \end{array}

(1RS,2SR,3RS)- and (1RS,2SR,3SR)-3-(Dimethylamino)-6,6-dimethylcyclohex-4-ene-1,2-dicarbonitrile (13 and 14, resp.; 1:7 diastereoisomeric mixture). Yield from 1, 82%.

Data of **13.** White crystals. M.p. 105–107°. R_f (cyclohexane/AcOEt 7:3) 0.17. IR (CHCl₃): 1450, 1360, 1254, 1168, 1020, 940, 816, 740. ¹H-NMR: 1.18 (*s*, 3 H); 1.27 (*s*, 3 H); 2.48 (*s*, 6 H); 3.11 (*dd*, J = 11.5, 4.5, H-C(2)); 3.16 (*d*, J = 11.5, H-C(1)); 3.42 (*dd*, J = 4.5, 4.5, H-C(3)); 5.62 (*dd*, J = 11, 4.5, H-C(4)); 5.70 (br. *d*, J = 11, H-C(5)). ¹³C-NMR: 118.3 (*s*); 117.7 (*s*); 44.0 (2*q*) (for rest of data, *cf*. the *Fig.*). MS: 203 (0, M^{++}), 125 (100), 110 (56), 82 (51), 42 (17).

Data of **14**. White crystals. M.p. 153–154°. R_f (cyclohexane/AcOEt 7:3) 0.13. IR (CHCl₃): 1450, 1364, 1260, 1150, 1026, 972, 838, 620. ¹H-NMR: 1.21 (*s*, 3 H); 1.25 (*s*, 3 H); 2.38 (*s*, 6 H); 2.90 (*d*, J = 11.5, H–C(1)); 3.00 (*dd*, J = 11.5, 10, H–C(2)); 3.57 (br. *d*, J = 10, H–C(3)); 5.53 (*dd*, J = 10, 2, H–C(4)); 5.66 (*dd*, J = 10, 2, H–C(5)). ¹³C-NMR: 119.2 (*s*); 117.2 (*s*); 40.5 (2*q*) (for rest of data, *cf*. the *Fig.*). MS: 203 (0.5, M^+), 125 (100), 110 (53), 82 (45), 42 (17).

(4aRS,5RS,6SR,7RS)- and (4aRS,5SR,6RS,7RS)-7-(Dimethylamino)-1,2,3,4,4a,5,6,7-octahydronaphthalene-5,6-dicarbonitrile (15 and 16, resp.; 1:5 diastereoisomeric mixture). Yield from 2, 89%.

Data of **15**. White crystals. M.p. 76–78°. *R*_f (cyclohexane/AcOEt 4:1) 0.30. IR (CHCl₃): 2920, 2850, 1440, 1260, 1202, 1020, 978, 840, 810. ¹H-NMR: 1.10–1.50 (3 H); 1.60–2.05 (3 H); 2.23–2.40 (3 H); 2.48 (*s*, 6 H); 2.95 (*dd*,

J = 11, 4, H-C(6); 3.02 (*dd*, J = 11, 9, H-C(5)); 3.35 (*m*, H-C(7)); 5.48 (br. *d*, J = 5.5, H-C(8)). ¹³C-NMR: 119.4 (*s*); 118.5 (*s*); 44.5 (2*q*) (for rest of data, *cf. Table 2*). MS: 229 (0.3, M^{+1}), 151 (100), 142 (19), 136 (25), 123 (21), 108 (32), 44 (38).

Data of **16**. White crystals. M.p. 105–107°. R_f (cyclohexane/AcOEt 4:1) 0.21. IR (CHCl₃): 2920, 2850, 2780, 1660, 1440, 1260, 1204, 1026, 978, 840, 812. ¹H-NMR: 1.27 (*m*, 2H); 1.51 (*m*, 1 H); 1.87–2.04 (3 H); 2.16–2.40 (3 H); 2.37 (*s*, 6 H); 2.87 (*dd*, J = 11.5, 10, H–C(6)); 3.27 (*dd*, J = 11.5, 5.5, H–C(5)); 3.50 (br. *d*, J = 10, H–C(7)); 5.35 (br. *s*, H–C(8)). ¹³C-NMR: 119.2 (*s*); 117.4 (*s*); 40.5 (2*q*) (for rest of data, *cf. Table 2*). MS: 229 (1, M^{++}), 151 (100), 142 (17), 136 (29), 123 (31), 108 (32), 94 (19), 77 (19), 42 (28).

(4aRS,5RS,6SR,7RS)- and (4aRS,5SR,6RS,7RS)-7-(Dimethylamino)-1,2,3,4,4a,5,6,7-octahydro-1,1-dimethylnaphthalene-5,6-dicarbonitrile (17 and 18, resp.; 5:1 diastereoisomeric mixture). Yield from 3, 90%.

Data of **17**. White crystals. M.p. 103–104°. R_f (cyclohexane/AcOEt 7:3) 0.28. IR (CHCl₃): 2920, 1560, 1450, 974, 902, 840, 652. ¹H-NMR: 1.03 (*s*, 3 H); 1.12 (*s*, 3 H); 1.30 (*m*, 1 H); 1.55 (br. *d*, J = 12.5, 1 H); 1.63–1.75 (3 H); 2.29 (*m*, 1 H); 2.48 (*s*, 6 H); 2.51 (*m*, 1 H); 2.95 (*dd*, J = 11.5, 3.5, H–C(6)); 3.02 (*dd*, J = 11.5, 11, H–C(5)); 3.39 (*m*, H–C(7)); 5.56 (br. *d*, J = 6.5, H–C(8)). ¹³C-NMR: 119.8 (*s*); 118.8 (*s*); 44.7 (2*q*) (for rest of data, *cf. Table 2*). MS: 257 (0, M^{+}), 210 (7), 195 (100), 167 (42), 152 (10), 140 (16), 127 (8), 114 (8).

Data of **18**. White crystals. M.p. 120–121°. R_{f} (cyclohexane/AcOEt 7:3) 0.18. IR (CHCl₃): 2910, 2860, 1560, 1446, 1200, 1152, 1040, 840, 820, 798. ¹H-NMR: 1.07 (*s*, 3 H); 1.10 (*s*, 3 H); 1.22 (*m*, 1 H); 1.58 (br. *d*, *J* = 12.5, 1 H); 1.68–1.78 (3 H); 2.21 (*m*, 1 H); 2.39 (*s*, 6 H); 2.64 (*m*, 1 H); 2.85 (*dd*, *J* = 11.5, 11, H–C(6)); 3.19 (*dd*, *J* = 11.5, 6, H–C(5)); 3.51 (br. *d*, *J* = 11, H–C(7)); 5.35 (br. *s*, H–C(8)). ¹³C-NMR: 119.4 (*s*); 117.7 (*s*); 40.6 (2*q*) (for rest of data, *cf. Table 2*). MS: 257 (1, M^{++}), 195 (100), 179 (12), 167 (41), 152 (10), 140 (21), 76 (15).

(4a RS, 5 RS, 6 RS, 7 RS)- and (4a RS, 5 SR, 6 RS, 7 RS)-7-(Dimethylamino)-1,2,3,4,4a,5,6,7-octahydro-1,1,4a-trimethylnaphthalene-5,6-dicarbonitrile (19 and 20, resp.; ≥ 20 :1 diastereoisomeric mixture). Yield from 4, 85%.

Data of **19**. White crystals. M.p. 129–130°. R_f (cyclohexane/AcOEt 7:3) 0.27. IR (CHCl₃): 2900, 1450, 1270, 1250, 1040. ¹H-NMR: 1.13 (*s*, 3 H); 1.14 (*s*, 3 H); 1.14–1.38 (2 H); 1.32 (*s*, 3 H); 1.58 (*m*, 1 H); 1.63 (*m*, 1 H); 1.81 (*m*, 1 H); 2.06 (br. *d*, J = 13.5, 1 H); 2.47 (*s*, 6 H); 2.93 (*d*, J = 13, H-C(5)); 3.26 (*dd*, J = 13, 6.5, H-C(6)); 3.41 (*dd*, J = 6.5, 5, H-C(7)); 5.56 (*d*, J = 5, H-C(8)). ¹³C-NMR: 118.2 (*s*); 118.0 (*s*); 43.4 (2*q*) (for rest of data, *cf. Table 2*). MS: 271 (1, M^{+*}), 193 (100), 178 (89), 149 (12), 122 (25), 107 (12), 79 (21), 55 (20), 42 (44).

Data of 20 (not isolated). ¹H-NMR: 2.39 (s, 6 H); 5.51 (d, J = 5, 1 H).

General Procedure for the Elimination of Me_2NH from Cycloadducts 7–11 and 15–19. Preparation of 21–40. A mixture of the cycloadduct (1 mmol) and silica gel (0.06–0.2 mm (Merck); 1 g) in cyclohexane (5 ml) was heated under the reaction conditions described in Table 3. After filtration, the filtrate was concentrated *i.v.* and the residue analysed by GLC and ¹H-NMR. Purification by CC (silica gel, cyclohexane/AcOEt 7:3) afforded 21–40.

Dimethyl (4a RS,5 RS)-1,2,3,4,4a,5-Hexahydronaphthalene-5,6-dicarboxylate (21) and Dimethyl 1,2,3,4,5,8-Hexahydronaphthalene-5,6-dicarboxylate (22). Ratio 21/22, 1.5:1; yield from 7, 85%.

Data of **21**. Colourless oil. B.p. (bulb-to-bulb distillation) 120–140°/0.05 Torr. R_f (cyclohexane/AcOEt 4:1) 0.12. IR: 2920, 2850, 1730, 1700, 1582, 1428, 1260, 1062, 1002, 840, 758. ¹H-NMR: 1.30–1.60 (3 H); 1.75–1.86 (2 H); 1.94 (m, 1 H); 2.14 (m, 1 H); 2.36 (br. d, J = 12, 1 H); 2.73 (m, 1 H); 3.38 (d, J = 6, H-C(5)); 3.70 (s, 3 H); 3.74 (s, 3 H); 5.75 (d, J = 6, H-C(8)); 7.05 (d, J = 6, H-C(7)). ¹³C-NMR: 174.8 (s); 167.6 (s); 52.3 (q); 51.7 (q) (for rest of data, *cf. Table 2*). MS: 250 (1, M^{++}), 191 (55), 159 (46), 131 (33), 105 (100), 91 (21), 59 (23).

Data of **22**. Colourless oil. B.p. (bulb-to-bulb distillation) $120-140^{\circ}/0.05$ Torr. $R_{\rm f}$ (cyclohexane/AcOEt 4:1) 0.18. IR: 2920, 1730, 1700, 1430, 1256. ¹H-NMR: 1.30–2.20 (8 H); 2.71 (*m*, 1 H); 2.91 (*m*, 1 H); 3.70 (*s*, 3 H); 3.74 (*s*, 3 H); 3.88 (br. *dd*, J = 6, 6, H-C(5)); 7.18 (*m*, H–C(7)). ¹³C-NMR: 172.7 (*s*); 166.5 (*s*); 52.0 (*q*); 51.7 (*q*) (for rest of data, *cf. Table 2*). MS: 250 (0, M^{++}), 191 (38), 159 (19), 131 (32), 105 (100), 91 (19), 59 (20).

Dimethyl (4aRS,5SR)-1,2,3,4,4a,5-Hexahydronaphthalene-5,6-dicarboxylate (**23**), Dimethyl 1,2,3,4-Tetrahydronaphthalene-5,6-dicarboxylate (**24**) and **22**. Ratio **22/23/24**, 1.8:1.3:1; yield from **8**, 59%. Colourless oil (b.p. (bulb-to-bulb distillation) 120–140°/0.05 Torr).

Data of **23**. R_f (cyclohexane/AcOEt 4:1) 0.12. 1R (CDCl₃): 2950, 2860, 1720, 1580, 1440, 1260, 1198, 1168, 840. ¹H-NMR: 1.20-1.45 (3 H); 1.75–1.90 (2 H); 1.94 (*m*, 1 H); 2.14 (*m*, 1 H); 2.48 (*d*, J = 14.5, 1 H); 2.75 (*m*, 1 H); 3.66 (*s*, 3 H); 3.73 (*s*, 3 H); 3.80 (*d*, J = 10.5, H–C(5)); 5.78 (*m*, H–C(8)); 7.06 (*d*, J = 6, H–C(7)). ¹³C-NMR: 172.4 (*s*); 167.3 (*s*); 51.6 (*q*); 51.5 (*q*) (for rest of data, *cf*. *Table 2*). MS: 250 (2, M^{+}), 216 (6), 190 (20), 159 (11), 131 (100), 105 (95), 91 (27), 59 (28).

Data of 24. $R_{\rm f}$ (cyclohexane/AcOEt 4:1) 0.12. ¹H-NMR: 7.17 (d, J = 8, 1 H); 7.74 (d, J = 8, 1 H). MS: 248 (0, M^{++}), 216 (100), 201 (23), 158 (77), 130 (55), 115 (38), 91 (21).

*Dimethyl (4a*RS,5 RS)-*1,2,3,4,4a,5-Hexahydro-1,1-dimethylnaphthalene-5,6-dicarboxylate (25). Yield from 9, 84%. Colourless oil. B.p. (bulb-to-bulb distillation) 160–180°/0.08 Torr. <i>R*_f (cyclohexane/AcOEt 4:1) 0.13. IR: 2900, 1735, 1702, 1580, 1430, 1264, 1040, 992, 840, 762, 740. ¹H-NMR: 1.13 (*s*, 3 H); 1.16 (*s*, 3 H); 1.35 (*m*, 2 H);

1.61 (br. d, J = 11.5, 2 H); 1.68–1.83 (2 H); 3.06 (ddd, J = 13, 5.5, 5, 1 H); 3.41 (d, J = 5.5, H-C(5)); 3.69 (s, 3 H); 3.76 (s, 3 H); 5.82 (d, J = 6, H-C(8)); 7.09 (d, J = 6, H-C(7)). ¹³C-NMR: 174.5 (s); 167.5 (s); 52.2 (q); 51.7 (q) (for rest of data, *cf. Table 2*). MS: 278 (2, M^{+}), 219 (100), 203 (43), 187 (77), 149 (90), 105 (36), 59 (34).

Dimethyl (4aRS,5SR)-1,2,3,4,4a,5-Hexahydro-1,1-dimethylnaphthalene-5,6-dicarboxylate (26), Dimethyl 1,2,3,4,5,8-Hexahydro-1,1-dimethylnaphthalene-5,6-dicarboxylate (27), and Dimethyl 1,2,3,4-Tetrahydro-1,1-dimethylnaphthalene-5,6-dicarboxylate (28). Ratio 26/27/28, 2.1:1.3:1; yield from 10, 52%. Colourless oil (b.p. (bulb-to-bulb distillation) 160–180°/0.08 Torr).

Data of **26**. $R_{\rm f}$ (cyclohexane/AcOEt 4:1) 0.13. ¹H-NMR: 1.09 (s 3 H); 1.18 (s, 3 H); 1.24–1.40 (2 H); 1.50 (m, 1 H); 1.57–1.70 (2 H); 1.91 (m, 1 H); 2.85–3.00 (2 H); 3.66 (s, 3 H); 3.74 (s, 3 H); 5.94 (dd, J = 6.5, 2, H-C(8)); 7.08 (d, J = 6.5, H-C(7)). ¹³C-NMR: 172.4 (2s); 51.6 (q); 51.5 (q) (for rest of data, cf. Table 2). MS: 278 (3, M^{++}), 219 (24), 187 (29), 149 (100), 105 (43), 91 (38), 59 (30).

Data of **27**. $R_{\rm f}$ (cyclohexane/AcOEt 4:1) 0.23. ¹H-NMR: 1.03 (*s*, 6 H); 2.92 (2 H); 3.69 (*s*, 3 H); 3.74 (*s*, 3 H); 3.92 (*dd*, J = 6, 6, H-C(5)); 7.23 (*dd*, J = 4.5, 4.5, H-C(7)). ¹³C-NMR: 172.7 (*s*); 166.4 (*s*); 51.6 (*q*); 51.4 (*q*) (for rest of data, *cf. Table 2*). MS: 278 (0, M^{++}), 219 (54), 203 (21), 187 (42), 149 (100), 105 (45), 91 (32).

Data of **28**. $R_{\rm f}$ (cyclohexane/AcOEt 4:1) 0.22. ¹H-NMR: 1.30 (s, 6 H); 2.72 (t, J = 6.5, 2 H); 3.87 (s, 3 H); 3.94 (s, 3 H); 7.44 (d, J = 8, 1 H); 7.78 (d, J = 8, 1 H). MS: 276 (1, M^{++}), 244 (100), 229 (78), 186 (74), 158 (33), 143 (38), 128 (66), 115 (59).

Dimethyl (4aRS,5RS)- and (4aRS,5SR)-1,2,3,4,4a,5-Hexahydro-1,1,4a-trimethylnaphthalene-5,6-dicarboxylate (29 and 30, resp.; 20:1 diastereoisomeric mixture). Yield from 11, 86%.

Data of **29**. White crystals. M.p. 53–54° ([5]: colourless oil). R_f (cyclohexane/AcOEt 4:1) 0.32. IR: 2900, 1730, 1700, 1560, 1432, 1272, 1190, 1160. ¹H-NMR: 1.16 (*s*, 3 H); 1.18 (*s*, 3 H); 1.20 (*s*, 3 H); 1.38 (*m*, 1 H); 1.45–1.75 (5 H); 3.36 (*d*, J = 3.5, H–C(5)); 3.73 (2*s*, 6 H); 6.02 (*d*, J = 6, H–C(8)); 6.97 (*dd*, J = 6, 3.5, H–C(7)): ¹³C-NMR: 172.9 (*s*); 167.0 (*s*); 51.6 (*q*); 51.4 (*q*) (for rest of data, *cf. Table 2*). MS: 292 (3, M^{+}), 260 (15), 233 (28), 217 (16), 201 (24), 176 (25), 163 (100), 119 (29), 59 (47).

Data of **30** [5]. Viscous colourless oil. B.p. (bulb-to-bulb distillation) $160-180^{\circ}/0.08$ Torr. R_{f} (cyclohexane/AcOEt 4:1) 0.32. IR: 2920, 1730, 1700, 1564, 1428, 1240, 1140, 1008, 840, 760. ¹H-NMR: 1.18 (*s*, 3 H); 1.19 (2*s*, 6 H); 1.20–1.82 (6 H); 3.35 (*s*, H–C(5)); 3.62 (*s*, 3 H); 3.75 (*s*, 3 H); 6.04 (*d*, J = 6, H–C(8)); 7.14 (*d*, J = 6, H–C(7)). ¹³C-NMR: 172.0 (*s*); 167.3 (*s*); 51.7 (*q*); 51.4 (*q*) (for rest of data, *cf. Table 2*). MS: 292 (4, M^{++}), 233 (25), 201 (16), 173 (18), 163 (100), 119 (29), 59 (30).

Equilibration of 29/30 (20:1). A mixture of 29/30 (20:1; 10 g, 0.034 mol) and 15% methanolic NaOMe soln. (120 ml) was stirred at r.t. during 24 h under N₂ and then poured into cold H₂O (200 ml). Acidification (10 N aq. HCl soln.) and extraction (toluene) afforded an org. phase which was washed with sat. aq. NaHCO₃ soln., H₂O, sat. aq. NaCl soln., dried (Na₂SO₄), and concentrated. Distillation *i.v.* afforded a 5.4:1 mixture 30/29 as a colourless oil (8.2 g, 82%).

(4a RS, 5 RS)- and (4a RS, 5 SR)-1,2,3,4,4a,5-Hexahydronaphthalene-5,6-dicarbonitrile (**31** and **32**, resp., 1.5:1 diastereoisomeric mixture). Yield from **15/16** (1:5), 40%. Colourless oil (b.p. (bulb-to-bulb distillation) 160–180°/0.08 Torr). R_f (cyclohexane/AcOEt 4:1) 0.20. IR (CDCl₃): 2930, 2850, 1570, 1440, 840.

Data of **31**. ¹H-NMR: 1.20–2.80 (9 H); 3.36 (d, J = 12.5, H–C(5)); 5.85 (d, J = 6.5, H–C(8)); 6.76 (dd, J = 6.5, 1.5, H–C(7)). ¹³C-NMR: 118.1 (s) (for rest of data, *cf. Table 2*).

Data of **32**. ¹H-NMR: 1.20–2.80 (9 H); 3.60 (d, J = 8.5, H–C(5)); 5.95 (m, H–C(8)); 6.83 (d, J = 6, H–C(7)). ¹³C-NMR: 117.2 (s) (for rest of data, *cf. Table 2*).

(4a RS, 5 RS)-1,2,3,4,4a,5-Hexahydro-1,1-dimethylnaphthalene-5,6-dicarbonitrile (33). Yield from 17, 85%. White crystals. M.p. 134–135°. R_f (cyclohexane/AcOEt 4:1) 0.34. IR (CDCl₃): 2900, 2850, 1560, 1440, 1360, 972, 840. ¹H-NMR: 1.12 (*s*, 3 H); 1.18 (*s*, 3 H); 1.37 (2 H); 1.62 (br. *d*, *J* = 14, 1 H); 1.73 (2 H); 2.23 (*m*, 1 H); 2.91 (*m*, 1 H); 3.34 (*dd*, *J* = 11, 3, H–C(5)); 5.97 (*dd*, *J* = 6, 2, H–C(8)); 6.80 (*dd*, *J* = 6, 3, H–C(7)). ¹³C-NMR: 118.2 (*s*); 117.2 (*s*) (for rest of data, *cf. Table 2*). MS: 212 (11, M^{++}), 195 (37), 170 (33), 155 (32), 143 (38), 129 (48), 69 (100).

1,2,3,4-Tetrahydro-1,1-dimethylnaphthalene-6-carbonitrile (34) and 1,2,3,4-Tetrahydro-1,1-dimethylnaphthalene-5-carbonitrile (35). Ratio 34/35, 6:1; yield from 18, 76%. Colourless oil (b.p. (bulb-to-bulb distillation) $140-160^{\circ}/0.05$ Torr). $R_{\rm f}$ (cyclohexane/AcOEt 4:1) 0.63. IR: 2950, 2240, 1606, 1560, 1498, 1460, 1362, 1080, 1058, 906, 898, 832.

Data of **34**. ¹H-NMR: 1.28 (*s*, 6 H); 1.68 (*m*, 2 H); 1.82 (*m*, 2 H); 2.78 (*t*, J = 6.5, 2 H); 7.33 (*s*, 1 H); 7.40 (2 H). MS: 185 (13, M^{++}), 170 (100), 142 (28), 115 (15), 77 (11).

Data of 35. ¹H-NMR: 2.96 (t, J = 6.5, 2 H). MS: 185 (12, M⁺⁻), 170 (100), 142 (25), 115 (17), 77 (16).

1,2,3,4,4a,7-Hexahydro-1,1-dimethylnaphthalene-5,6-dicarbonitrile (36), (4aRS,5SR)-1,2,3,4,4a,5-Hexahydro-1,1-dimethylnaphthalene-5,6-dicarbonitrile (37) and 33. Ratio 36/37/33, 7.7:1:1.6; yield from 18, $72\%^{12}$).

¹²) Also detected (GLC, ¹H-NMR) was **34/35** (6:1; yield from **18**, 7%).

Data of **36.** White crystals. M.p. 76–77°. R_f (cyclohexane/AcOEt 4:1) 0.50. IR (CHCl₃): 2940, 1450, 1420, 1386, 1368, 950, 908, 865. ¹H-NMR: 1.05 (*s*, 3 H); 1.10 (*s*, 3 H); 1.27 (*m*, 2 H); 1.53 (br. *d*, J = 14.5, 1 H); 1.68–1.84 (2 H); 2.29 (br. *d*, J = 12, 1 H); 2.98–3.18 (3H); 5.39 (*m*, H–C(8)). ¹³C-NMR: 115.7 (*s*); 115.4 (*s*) (for rest of data, *cf. Table 2*). MS: 212 (20, M^{++}), 211 (37), 197 (90), 170 (77), 155 (100), 142 (97), 129 (58), 114 (48), 70 (74).

Data of **37**. R_{f} (cyclohexane/AcOEt 4:1) 0.38. ¹H-NMR: 1.10 (*s*, 3 H); 1.23 (*s*, 3 H); 1.20–1.80 (4 H); 2.04 (*m*, 1 H); 2.48 (*m*, 1 H); 2.77 (*m*, 1 H); 3.58 (*d*, J = 8, H–C(5)); 6.10 (*m*, H–C(8)); 6.87 (*d*, J = 6, H–C(7)). ¹³C-NMR: 116.4 (*s*) (for rest of data, *cf. Table 2*). MS: 212 (16, M^{++}), 195 (93), 170 (67), 155 (39), 142 (42), 129 (43), 115 (37), 69 (100).

(4a RS, 5 RS)- and (4a RS, 5 SR)-1,2,3,4,4a,5-Hexahydro-1,1,4a-trimethylnaphthalene-5,6-dicarbonitrile (38 and 39, resp.) and 1,2,3,4,4a,7-Hexahydro-1,1,4a-trimethylnaphthalene-5,6-dicarbonitrile (40). Ratio 38/39/40, 4:4:1; yield from 19, 89%.

Data of **38**. White crystals. M.p. 97–98°. R_{f} (cyclohexane/AcOEt 4:1) 0.32. IR (CHCl₃): 2940, 2210, 1550, 1460, 1372, 1272, 840. ¹H-NMR: 1.17 (*s*, 3 H); 1.19 (*s*, 3 H); 1.24 (*s*, 3 H); 1.38 (2 H); 1.58 (*m*, 1 H); 1.72 (2 H); 2.18 (br. *d*, J = 14, 1 H); 3.49 (*d*, J = 3, H-C(5)); 6.08 (*d*, J = 6, H-C(8)); 6.85 (*dd*, J = 6, 3, H-C(7)). ¹³C-NMR: 116.9 (*s*); 116.3 (*s*) (for rest of data, *cf. Table 2*). MS: 226 (40, M^{+1}), 211 (100), 194 (41), 183 (41), 169 (70), 156 (66), 141 (53), 69 (47), 41 (86).

Data of **39**. White crystals. M.p. 117–118°. R_f (cyclohexane/AcOEt 4:1) 0.39. IR (CHCl₃): 2950, 2210, 1560, 1460, 1380, 980, 850. ¹H-NMR: 1.17 (*s*, 3 H); 1.19 (*s*, 3 H); 1.24 (*s*, 3 H); 1.20–1.80 (5 H); 2.02 (*m*, 1 H); 3.13 (*s*, H–C(5)); 6.16 (*d*, J = 6, H–C(8)); 6.91 (*d*, J = 6, H–C(7)). ¹³C-NMR: 116.4 (*s*) (for rest of data *cf. Table 2*). MS: 226 (21, M^+), 211 (24), 184 (30), 169 (22), 156 (28), 141 (27), 131 (21), 115 (21), 69 (100).

Data of **40**. White crystals. M.p. 120–121°. R_f (cyclohexane/AcOEt 4:1) 0.52. IR (CHCl₃): 2950, 2230, 1462, 1380, 1010, 980, 720, 662. ¹H-NMR: 1.14 (*s*, 3 H); 1.18 (*s*, 3 H); 1.31 (*m*, 1 H); 1.41 (*s*, 3 H); 1.48–1.60 (2 H); 1.67 (*m*, 1 H); 1.84 (*m*, 1 H); 2.05 (br. *d*, J = 14, 1 H); 3.05 (*d*, J = 4, 2 H–C(7)); 5.61 (*dd*, J = 4, 4, H–C(8)). ¹³C-NMR: 115.8 (*s*); 114.7 (*s*) (for rest of data, *cf. Table 2*). MS: 226 (4, M^{++}), 211 (100), 195 (67), 169 (39), 155 (41), 141 (42), 128 (18), 114 (22), 77 (27), 69 (30), 41 (34).

Also isolated by CC (silica gel (200 g), cyclohexane/AcOEt 4:1) of the mother liquour was *dimethyl* (*1* RS, 2RS, 4a RS, 8a RS)-1, 2, 3, 4, 4a, 5, 6, 7, 8, 8a-decahydro-5, 5, 8a-trimethylnaphthalene-1, 2-dicarboxylate (42): white crystals (0.1 g, 3%). M.p. 66–68° ([8]: 68–70°). R_f (cyclohexane/AcOEt 4:1) 0.38. IR: 2950, 1740, 1438, 1390, 1370, 1210, 1160, 1098, 1008, 822. ¹H-NMR: 0.82 (s, 3 H); 0.85 (s, 3 H); 1.05 (s, 3 H); 0.80–1.70 (9 H); 2.23 (m, 1 H); 2.34 (m, 1 H); 2.34 (d, J = 5, H–C(1)); 3.14 (ddd, J = 5, 2, 2, H–C(2)); 3.64 (s, 3 H); 3.66 (s, 3 H). ¹³C-NMR: 174.4 (s); 172.4 (s); 51.5 (q); 51.0 (q) (for rest of data, *cf. Table 2*). MS: 296 (3, M^{++}), 281 (9), 264 (10), 159 (15), 145 (53), 123 (92), 113 (100), 107 (57), 93 (63), 81 (64), 69 (74), 55 (69).

(4a RS, 5S R, 8a RS) - [1,2,3,4,5,8,8a-Octahydro-6-(hydroxymethyl)-1,1,4a-trimethylnaphthalen-5-yl]methanol (43). A soln. of 41 (1.6 g, 5.4 mmol) in Et₂O (10 ml) was added dropwise within 20 min to a stirred slurry of LiAlH₄ (0.38 g, 0.01 mol) in Et₂O (15 ml) at -30° under N₂. The mixture was allowed to attain r.t. during 2 h, cooled to 0°, and H₂O (0.38 ml), 15% aq. NaOH soln. (0.38 ml), and H₂O (1.2 ml) were successively added dropwise. Filtration (*Hyflo*), concentration of the filtrate, and CC of the residue (silica gel (200 g), toluene/ACOEt 1:1) afforded 43 as white crystals (0.85 g, 66%). M.p. 83-84° ([10]: 75.5-77°; [11]: 73-74°; [5]: 63-64°; [8]: 73-74°).*R*_f (toluene/ACOEt 1:1) 0.30. IR(CDCl₃): 3380 (br.), 1440, 1390, 1364, 1110, 1040, 980. ¹H-NMR (+D₂O): 0.75 (s, 3 H); 0.87 (s, 3 H); 1.10-1.28 (3 H); 1.40-1.62 (3 H); 1.80-2.15 (4 H); 3.65 (*dd*,*J*= 11, 8.5, 1 H); 3.88 (*dd*,*J*= 11, 2, 1 H); 3.95 (*d*,*J*= 11.5, 1 H); 4.33 (br.*d*,*J*= 11.5, 1 H); 5.79 (m, H-C(7)). ¹³C-NMR: 67.4 (r); 61.3 (r) (for rest of data, cf. Table 2). MS: (0.5,*M*⁺), 190 (11), 124 (27), 119 (19), 109 (100), 95 (21), 91 (28), 81 (30), 69 (27).

Also isolated was (3 RS, 3a RS, 5a RS, 9b RS)-dodecahydro-6,6-9a-trimethylnaphtho[1,2-c]furan-3-ol (44): white crystals (0.15 g, 12%). M.p. 89–91°. R_f (toluene/AcOEt 1:1) 0.39. IR (CDCl₃): 3290 (br.), 1440, 1390, 1365, 1110, 1040, 980, 836. ¹H-NMR (+D₂O): 0.84 (s, 3 H); 0.88 (s, 3 H); 0.90 (s, 3 H); 1.00–1.75 (10 H); 1.80 (dd, J = 6, 6, 1 H); 1.92 (m, 1 H); 2.11 (m, 1 H); 3.84 (d, J = 10, 1 H); 4.00 (dd, J = 10, 5.5, 1 H); 5.21 (d, J = 7, 1 H). ¹³C-NMR: 102.3 (d); 68.7 (t) (for rest of data, *cf. Table 2*). MS: 238 (0, M^{++}), 220 (2), 177 (12), 149 (29), 123 (47), 107 (34), 95 (56), 82 (199), 69 (64). (4a RS, 5 RS)-[1,2,3,4,4a,5-Hexahydro-6- (hydroxymethyl)-1,1,4a-trimethylnaphthalen-5-yl]methanol (45). As described for 43, with 29 (5 g, 0.017 mol) in Et₂O (10 ml), LiAlH₄ (1 g, 0.026 mol) in Et₂O (35 ml), workup with H₂O (1 ml), 15% aq. NaOH soln. (1 ml) and H₂O (3 ml) and CC (silica gel (350 g), toluene/AcOEI 7:3): 45 as white crystals (2.5 g, 62%). M.p. 106-107° ([5]: 102-103°). $R_{\rm f}$ (toluene/AcOEI 1:1) 0.30. IR (CDCl₃): 3340 (br.), 2925, 1460, 1362, 1032, 980, 840. ¹H-NMR (+D₂O): 0.89 (s, 3 H); 1.11 (s, 3 H); 1.14 (s, 3 H); 1.35 (m, 2 H); 1.46 (br. d, J = 13, 1 H); 1.55–1.75 (2 H); 2.00 (br. d, J = 14, 1 H); 2.41 (m, 1 H); 3.91 (d, J = 11, 1 H); 3.97 (dd, J = 11, 3.5, 1 H); 4.16 (d, J = 13, 1 H); 4.38 (d, J = 13, 1 H); 5.87 (d, J = 6, 1 H); 6.00 (dd, J = 6, 3.5, 1 H). ¹³C-NMR: 65.9 (t); (60.0 (t) (for rest of data, cf. Table 2). MS: 236 (1, M^+), 218 (7), 173 (13), 145 (22), 132 (37), 119 (58), 105 (100), 91 (52), 79 (24), 69 (21), 55 (30).

Also isolated was (3 RS, 3a RS, 9a SR, 9b RS) - 1,3,3a,4,6,7,8,9,9a,9b-decahydro-6,6,9a-trimethylnaphtho[1,2-c]furan-3-ol(**46**): viscous, colourless oil (0.4 g, 10%). B.p. (bulb-to-bulb distillation) 180–200°/0.08 Torr.*R*_f(toluene/AcOEt 1:1) 0.41. IR: 3400 (br.), 2900, 1460, 1372, 1040, 970, 902. ¹H-NMR (+D₂O): 1.03 (s, 3 H); 1.09 (s, 3 H); 1.11 (s, 3 H); 1.10–1.85 (6 H); 1.97 (m, 1 H); 2.17 (m, 1 H); 2.29 (m, 1 H); 2.41 (m, 1 H); 3.88 (dd, J = 8.5, 4, 1 H); 4.07 (dd, J = 8.5, 7, 1 H); 5.21 (d, J = 3.5, 1 H); 5.62 (dd, J = 7, 2.5, 1 H). ¹³C-NMR: 105.7 (d); 68.4 (t) (for rest of data,*cf. Table 2*). MS: 236 (1,*M*⁺), 218 (15), 147 (26), 133 (100), 119 (50), 105 (82), 91 (67), 81 (41), 69 (31), 55 (31).

(4a RS, 5SR) - [1,2,3,4,4a,5-Hexahydro-6-(hydroxymethyl)-1,1,4a-trimethylnaphthalen-5-yl]methanol (47). As described for 43, with 30 (1 g, 3.4 mmol) in Et₂O (2 ml), LiAlH₄ (0.2 g, 5.2 mmol) in Et₂O (5 ml), workup with H₂O (0.2 ml), 15% aq. NaOH soln. (0.2 ml) and H₂O (0.6 ml) and CC (silica gel (100 g), toluene/AcOEt 4:1): 47 as white crystals (0.55 g, 69%). M.p. 104–105°. $R_{\rm f}$ (toluene/AcOEt 4:1) 0.23. IR (CDCl₃): 3320 (br.), 1450, 1365, 1020, 840. ¹H-NMR (+D₂O): 1.10 (s, 3 H); 1.12 (s, 3 H); 1.13 (s, 3 H); 1.20–1.80 (6 H); 1.94 (dd, J = 9, 5, 1 H); 3.61 (dd, J = 10, 9, 1 H); 3.82 (dd, J = 10, 5, 1 H); 4.08 (d, J = 12.5, 1 H); 4.17 (d, J = 12.5, 1 H); 5.82 (d, J = 5.5, 1 H); 5.91 (d, J = 5.5, 1 H). ¹³C-NMR: 66.5 (t); 61.1 (t) (for rest of data, *cf. Table 2*). MS: 236 (1, M^{++}), 48 (3), 173 (11), 145 (18), 132 (39), 118 (49), 105 (100), 91 (40).

Also isolated was (3 RS, 3a SR, 9a RS, 9b RS)- and (3 RS, 3a RS, 9a SR, 9b SR)-1,3,3a,4,6,7,8,9,9a,9b-decahydro-6,6,9a-trimethylnaphtho[1,2-c]furan-3-ol (**48** and **49**, resp.; 1.3:1 diastereoisomeric mixture): viscous, colourless oil (75 mg, 9%). B.p. (bulb-to-bulb distillation) 180–200°/0.08 Torr. R_{f} (toluene/AcOEt 1:1) 0.44. IR: 3320 (br.), 1460, 1382, 1362, 1282, 1258, 1120, 1082, 980, 906, 820, 670. MS: 236 (1, M^{++}), 218 (10), 175 (12), 147 (16), 133 (53), 119 (51), 105 (100), 91 (89), 79 (43), 55 (50).

Data of **48**. ¹H-NMR (+D₂O): 1.08 (*s*, 3 H); 1.18 (*s*, 3 H); 1.28 (*s*, 3 H); 1.00–2.40 (10 H); 3.71 (*dd*, J = 11, 8, 1 H); 4.13 (*dd*, J = 8, 8, 1 H); 5.36 (*d*, J = 5, 1 H); 5.58 (*m*, 1 H). ¹³C-NMR: 98.6 (*d*); 67.9 (*t*) (for rest of data, *cf*. *Table* 2).

Data of **49**. ¹H-NMR (+D₂O): 1.07 (s, 3 H); 1.17 (s, 3 H); 1.25 (s, 3 H); 1.00–2.40 (10 H); 3.85 (dd, J = 11, 8, 1 H); 3.91 (dd, J = 8, 8, 1 H); 5.14 (d, J = 5, 1 H); 5.59 (m, 1 H). ¹³C-NMR: 103.3 (d); 66.6 (t) (for rest of data, cf. Table 2).

REFERENCES

- [1] a) R. L. Snowden, M. Wüst, Tetrahedron Lett. 1986, 27, 699; b) ibid. 1986, 27, 703.
- [2] R. L. Snowden, S. M. Linder, Helv. Chim. Acta 1988, 71, 1587.
- [3] a) R. L. Snowden, Tetrahedron Lett. 1984, 25, 3835; b) R. L. Snowden, S. M. Linder, M. Wüst, Helv. Chim. Acta 1989, 72, 892.
- [4] Ae. de Groot, T. A. van Beek, Recl. Trav. Chim. Pays-Bas 1987, 106, 1.
- [5] M. Jalali-Naini, D. Guillerm, J.-Y. Lallemand, Tetrahedron 1983, 39, 749.
- [6] a) S.P. Tanis, Y.M. Abdallah, Synth. Commun. 1986, 16, 251; b) M. Sakaino, J. Meinwald, *ibid.* 1987, 28, 3201; c) J.F. He, Y.L. Wu, Tetrahedron 1988, 44, 1933; d) M. Fétizon, P. Goulaouic, I. Hanna, T. Prangé, J. Org. Chem. 1988, 53, 5673; e) T.A. Engler, U. Sampath, S. Naganathan, D. Van der Velde, F. Takusagawa, D. Yohannes, *ibid.* 1989, 54, 5712.
- [7] a) P. R. Jenkins, K. A. Menear, P. Barraclough, M.S. Nobbs, J. Chem. Soc., Chem. Commun. 1984, 1423; b)
 K. C. Nicolaou, W.S. Li, *ibid.* 1985, 421; c) F. E. Ziegler, B. H. Jaynes, M. T. Saindane, Tetrahedron Lett.
 1985, 26, 3307; d) P. Magnus, C. Walker, P. R. Jenkins, K. A. Menear, *ibid.* 1986, 27, 651; e) Z. Y. Liu, X. R. Zhou, Z. M. Wu, J. Chem. Soc., Chem. Commun. 1987, 1868; f) E. J. Corey, P. Da Silva Jardine, J. C. Rohloff, J. Am. Chem. Soc. 1988, 110, 3672; g) K. Kanematsu, S. Nagashima, J. Chem. Soc., Chem. Commun. 1989, 1028; h) E. J. Corey, P. Da Silva Jardine, Tetrahedron Lett. 1989, 30, 7297.
- [8] D. M. Hollinshead, S. C. Howell, S. V. Ley, M. Mahon, N. M. Ratcliffe, P. A. Worthington, J. Chem. Soc., Perkin Trans. 1 1983, 1579.
- [9] R. L. Snowden, S. M. Linder, B. L. Muller, K. H. Schulte-Elte, Helv. Chim. Acta 1987, 70, 1858.
- [10] M. Tanemura, T. Kato, Y. Kitahara, Bull. Chem. Soc. Jpn. 1970, 43, 1268.
- [11] S.P. Tanis, K. Nakanishi, J. Am. Chem. Soc. 1979, 101, 4398.